

دفتر : معادلات تفاضلیة عادیة

Ordinary Differential Equations

للدكتور : فراس

للطالب: صلاح الدين حسان

Differential Equations ntroduction Devivative Partial devivative ordinary derivative الهشتقة المزاحية المشتقة العآدية * Contains only 1 Independent *contains move than 1 Independent Variable تحتوي على متغيرمستقل واحد آدتوي على اعترمن 1019 deimo meio * Contains I or move defendent آهتوي على متغير تابع وادر أو اكثر Fx) u=2xy-3x2+y Ex) -y=3x2+Sinx-Pind Oux= 24 - 24 - 6x find y' yide Rendent K) Endependent $y' = 6x + \cos x$ @ uy= = 2x+1 y: defendent V. y Interestent valuable X: Independent K& Comment of the x: Independent V. y: Independent, v. u: Deferibente V. 1

التعريف: أي معادلة تمتوي على مشتقة	
۸-۵ ۸ ، ، ،	
معادلة تد تو ي على مشتقات لمعامل تأيع	
واحد أو اكثر مع وجود عامل مستقل و احد أو اكثر تس	-
واحد أو اكثر مع وجود عامل مستقل و احد أو اكثر تسون ما دالة تفاهلة (ع.ك) . صلامات شيمنروري تعون اكثرمنا معادلة تفاهلة (ع.ك. (مشتقة عا واعدة أو اكثر	7
المستقة ع والادة أو الخليج	
Fa) = terro x: Indefendant U.	
Dy'+y'=5x D.E.	
Joys, Defendent v.	
Bou + 2x = 4 D. E.	
OK Selendent V.	
	<u>. </u>

	T
(I) Classification by order:	
الرتبة المعادلة التناخلية تعون رتبة أعلى مشتقة في المعادلة	
Ex) What is the order for each of the following	1 caret
$(x)y''-y'\cdot y''-5x=0$ order = 2	
	\$
(3) $(y^{(3)})^{5} + 2y'' + y' = 2 $ sorder = 3	
$\frac{\partial}{\partial x} = \frac{\partial^2 f}{\partial x \partial z} + 5$	
	:
ııııııııııı. Five Apple	<u>! , </u>

		
'		
	Solution of	0.5
	30 WK 1811 3 V	W E
	-	
	Earlicit Solution	Implicit golution
		(همه آ
	Ex) y= fca)	Fix) x2+y2=4
	<u></u>	विगंगं विक पट
	5-1 C/ 1-11 1 2x 11 -	MORCIL C. I. Line
	Ex) Show that y- ex 15 an e	EXFINCE SOLUCION
	to -y'-2y=0	
		2 4
	Solution: y = en , y	= 2ex
300	9-20 is is 2 2x - 2ex -	20 2 0=0 #
	Ex) Show that 4x2-y2=4 75 an	son Discret Salution
	the show that The Jer (sweet)	
	to 9.05 - 4x = 0	
	Solution 4x2-4=4	1 8x-2yy'=0
		14 = 4x
		9
	J 4 4x 4x =	0 -1 0 =0 \$
) P. y	, N
1		
		Five Apple

	; 1
Chapter 28 First order DE	
This DE has the form dy - PC	×/4)_
The state	F.
Separable Equation:	
This DE has the form dy = g(u). h	
Ex) Determine the Serable Solution from following:	the
1 dx - ex-37	
Sol: du = et e ³³ Separable	
$\frac{\partial dy}{dx} = \frac{xy + y}{yx + x}$: : : : :
Solo dy - y (X+1) - dy - y - X S	efardble
3 = x Sin(x+y)	
Not separalde	<u>:</u>
Five Apple	: 1

* To solve the Separable equation of = 9 ca). his hordy = gla) da 2=> Strongly = Sg(a) da For Solve: (2+x) dy - (y+3) - Separable Sol: (2+x) dy - (4+3) 3) yes dy = - dx =) S = S = dx Ln1y+31 = Ln12+A1+C}> Inpliat Solution If I want an Explicit Solution: 412+X1+C [9=-3+C12+X1] and [9=-3-C]2+X1]

Explicit Solution Explicit Sol

Ex) find the values of M and N which make
the D.E. Separable.
SeParable Tigil & Lia Lia Lia Start La
1
$\frac{dy}{dx} = \frac{xy + 2y + 3x + M^2}{xy - 2x + 4y - n}$
xy -2x +4y -n
Sol: by = 4 (x+2) + 3 (x+12)
$\frac{Sol:}{dx} = \frac{y(x+2) + 3(x + \frac{M^2}{3})}{x(y-2) + 4(y-\frac{N}{4})}$
$\frac{m^2}{3} = 2 = 2$ $M^2 = 6$
$M=\pm\sqrt{6}$
#2=+N =) $N=8$
is) Solve the IVP: (x+1) dy - (y²+1) dx =0, y(0)=1
Sol: (x+1)dy = (y2+1)da
Separable - July = 1 dx =) Sindy = Sindy
$tan^{-1}y = \ln x+1 + C$
Since y(0)=1 => tantr = Ln 1 +c
X 5 TT = 0+6 (00 C=TT)
00 tany = Ln(x+1) + =
Five Apple
is y = tean (lulx+11+#) Five Apple

= P(t)+1 with t(0) tan (Lnlt+el-1) f(2) = tan(Ln(2+e). Five Apple

Linear Equation it livet Order
* The Standard Form of this equation is:
Linear ing t y + P(x) y = g(x) - (x)
* To Solve this equation:
O Find the Integrating factor (Mus) as:
$\mathcal{M}(x) = e^{s p(x) \cdot dx}$
2 Multiply both sides of equation (*) by dux), then we have : dux) [Y'+P(x)y=g(x)
$\frac{\partial h(x) y' + \partial h(x) P(x) y}{\partial h(x)} = \frac{\partial h(x) y}{\partial h(x)}$
This side equals of [Mossy]
3 Integrate both sides (with respect x)
Sdr [dux) y] = Sdrex) gas dx
drowy = Solvery gox) . de + C
y= 1 School g (x) dx + c > This is the solution.
Five Apple

Scanned with CamScanner

Scanned with CamScanner

Scanned with CamScanner

Ex) solve (x+2)2y' = 5-4y-2xy Five Apple

		. '
For the hinear DE: xy'+2x	integrating fo	ret
For the hinear DF: xy'+2x	120(x)4 = x9(x)	
find PCal.	100) = 100	:
Lind L(x).		:
2 1		/
Sol:	4 . 0/. 1	(w)
4 - 2 - 0 - 2 - 2 - 2	J+1009=3	:
X de ruai => y + 2x P(x) y = 9 (x)	00 01	<u>: </u>
<i>U</i> -	$P(\alpha) = \frac{dx}{dx}$	-
2 x PCa) = die		:
2x PCM = x . 2 . Ln ?		:
2x PCX) = x 2 Ln2	2	
27		-
2xp(x) > Ln2 -	$\frac{ P(x) = \frac{Ln2}{2x^2}}{\frac{2}{2}}$	
X	2 x ²	
	V	
		:
		-
		:
		:
		:
		:
		:
		:
		:
	Five Apple	. 1

Scanned with CamScanner

Scanned with CamScanner

O Px = 2x +y + 2605 (2x+3y) +y exy ((xey+xy+Sin(x+2y)+ey)dx $= \frac{x^2}{2} e^{y} + \frac{x^2}{2} y - \cos(x+2y) + e^{xy} + g(y)$ = Ke + 93 x = cos (x+24) + ex + h(x) Five Apple

	1
Exact Equation	
The DE M(x,y) dx + N(x,y) dy =0 is said to be exact if My = Nx or (on oy)	- 5x
Fa) Determine whether the DE is exact not.	01
$(5x+4y)dx+(4x-8y^3)dy=0$	=
My = 4 $N_x = 4$ Since My = $N_x = 4$ Exact	
2) (siny -x cosy) dx + (x cosy-siny) dy	120
$My = \cos y + x \sin y$ $Nx = \cos y$	
Since My & Nx 23 Not Exa	ct
	: : : :
<u> </u>	: 1

Prixy = c is a solution of the (Cosx Sinx -xy2) dx + (J-yx2) d Soli Solution is flag S(1 Sin(2x) - Xy2) dx اذا ، ادا ، الله بالنسبة لله (١) بمنيف الحمان (أوثام) بدلالة الروع ع (وو اما اذا كاملتا بالنسه لاالم

Scanned with CamScanner

Ex) find the general function Mcx, y) so the
the following DE is exact
THE POWER ITY OF IS SAFE
(4 May) - 2xy) dx + (see2y+ x)
Sol:
- exact =)
> (4M(xy) +2xy) = Nx
Toy we will be to the state of
2 (4 Mexis) + 2xy) = 5
39
FXXX F T PARTY PINA
S= (4Mcky)+2xy) dy = S=dy
$f \times z + z + z = y \wedge x$
4Mary + 2xy = ln/y/ + 9(x)
HOT FIRSTANDED
4 x mai M(x/y) = -2 xy + Ln(y) + g(x)
(01=0/ = 0/=0/ V = P/= = = = = = = = = = = = = = = = = =
Five Apple

Special Intervated factor: DE Mdx+Ndy-0 isn't exact 1) If the function My. on x then the Special Integrated factor for Movever, the DE & become exact if It's multiplied by M(x) D) If the function Nx-My depends on y only then the special integrating factor of DE (#) is: Morever, the DE (*) becomes exact if it's multiplied by Luy) De Down die et Emice? We is ligo De De كالدب وتميراء الماله ١٥ وانا ما زبط بترب الغانة ريمن بسح مالة عامدة باز بالم الله ما ول تعرف الكي ما واله من النظر الم القريب بالله الله القريب المنظر الم القريب المنظر الم

Fa) find the Integrating factor for the Collowing non-exact DE
(X+y) dx + x hnx dy =0
Sol: My = 1 , Nx = 1+ Lnx
My +Nx =) Not exact
$\frac{Now, My-Nx = 1-lnx-l = -lnx}{N} = \frac{1-lnx-l}{x lnx} = \frac{1}{x lnx}$
لى بوت هذه المالة المولى يعتد على الله الأولى المالة الأولى يعتد على الله الأولى المالة الأولى المالة الأولى المالة الأولى المالة المولى المالة الما
Julidaia The special integrating factor is thus = State = emx = x = x

$\frac{fx}{m} = \frac{6xy dx + (4y + 9x^2) dy}{N} = 0$
Soln.: $My = 6x , Nx = 18x$
=> My +Nx, not exact
Now, $\frac{Nx-My}{M} = \frac{18x-6}{6xy} \times \frac{2}{6xy} \times \frac{2}{9}$
لع بحب أن يتون جواب المالة الثانية يعتمد على (لا) فقطم اذا ظهر (لا) بتتون هذه المالة غير المحمدة .
Julians =) The special I.f. is: My = e = = y2
Five Apple

Scanned with CamScanner

SI TO II.	
Ex) If My = y is and integrating fact the non-exact equation	sor for
$xy dx + (2x^2 + 3y^2 - 20) dy = 0$	Find
Soln.:	
Multiply the DE by drey = yk	
$y^{1/2} \left(xy dx + (2x^2 + 3y^2 - 2e) dy = 0 \right)$	
$\frac{Xy^{K+1}}{M} dx + (2x^2y^k + 3y^{2+k} - 20y^k)dy =$	o exact
=) My = Nx =) (K+1) xy K = (1xy K	
=) K+1 =4 =) [K=3]	
	<u> </u>

Ex) The ODE (x2+y) dx + fully 20 b. exact by the integrating factor	
Ernd fex)	
Soln: dultiply by drew = x	
$(x^3+yx)dx+xfa)dy=0.e$	xact
M	
=) My $=Nx$ $=$ Nx	
Sxdx = SNx dx = 18 C rute 300) aboll 00	26
$\frac{1}{2}x^{2}9(y) = N$ = $\frac{1}{2}x^{2}+9(y)=1$	x flocs
$\frac{1}{2}x^2 + C = x f(x)$	
27700	
P(x) = x + C	
	:
	:

Remark: If M(K/y) = x y is an integrating factor non-exact OF Mda + Ndy =0 then we use the condition My - Nx - PN - 9 M to find P and q Ex) find the integrating factor d(x14) = x y for (4xy2 +3y) dx + (3x2y +2x) dy =0 find P and 9 My - Nx = P. - 9. M $8xy + 3 - (6xy + 2) = P(3x^2y + 2x) - 9(4xy^2+3y)$ 2xy+1 = P(3xy+2) - 2(4xy+3) 2xy+1 = 3Pxy+2P-49xy 39 2xy+1 = (3p-49)xy + (2p-39)2=3P-42 --- O =) 3.00 + -4.0 = 2P-39 -6=91-129 $\therefore \mathcal{N}(x,y) = xy^2 = x^2y$ por -4=-8P+129 Five Apple

	-
Homogeneous Equation:	
The first of the first	
Defendance Alexalore a control to la	
Definition: A function G(x1) is said to be	
Homogeneous of Order n it G(tx,ty)=though	45)_
	- :
Ex)	-
G(x,y) = x2+2xy = Is a homogeneous?	<u>:</u>
Seln. G(tx/ty) = (tx)2 + 2(tx)(ty)	
$= t^2 x^2 + 2t^2 xy$. \
$z t^2 (x^2 + 2\alpha y)$	
= t2 Ca(x/y) homogeneous of	- 0/0
Ex) G(x,y) = x2+y2+2xy2, Is Go homogeneous?	
Soln. Cn(+x/ty) = (+x)2 + (+y)2+2(+x)(+y)2	
10(N) 2(+x) + CCX) CCX	
2 2 .2 2 .3 2	<u>:</u>
$2t^2x^2+t^2\cdot y^2+2t^3xy^2$:
# th 6 (xy) not homogeneou	5
	:
	-
	:

Definition: The DE MUX, y) dx	+ N(x, y) dy = 0
is said to be momogeneous if are homogeneous of the same order	M(xxx) and N(xxx)
ave homogeneous of the same civiler	
$[x]$ $(x^2+y^2)dx + (y_x + 2y^2)dy = 0$	DE , is homogeneous
Soln Homogeneous of order 2	
$(x^2 + xy) dx + (2xy + y^2 + 5) dy = 0$	O / IS DE homoge
Soln. Not horrogeneous	
$\frac{E \times \int dy - 4x^3 - xy^2}{dx} = \frac{4x^3 - xy^2}{2y^3 + x^2y}$, TS DE how	rogeneous?
Soln. Homogeneous of order 3	
1 1 1 1 1 1 1 1 1	Five Apple

Scanned with CamScanner

hinear second and Higher order DE an(x) y + an (x) y (m) + a (x) y!
+ a (x) y = g (x) ... 0 Homogeneous quani jas g plus gos uls 1:11 @ If g (a) to , then the eq. 10 is Remark: called non-homogeneous, but It g(a) = 0, then eq.0 is called homogeneous x²y" + 3xy' - 4y=0 honogeneous x2y11 + 2xy1 -54 z ex non-homogeneou B) If an(x), an, (x), --, a, (x), ao(x) ave constants, then any + an, yn, +--+ a, y, +00 y is call I linear DE with Constant Coefficients Ex) 3y" -2y' + 5y =0 homogeneous with constant coefficients Five Apple

														_					•
1	-	T		1	1	1	1	ı	L		1	1			ı	1	1	1	. 1
																	10		:
	7	1.		6		_	ς,	م ٥			1 50	214	Pvi	У Ф.	DIA				
		-	-0-		_	_•_		49	<u> </u>	0_8						_			
			I	P	4.	, ,	12			, Yn	a	re	50	(ut	101	LS	Po	✓ .	
			e			<u>a</u>	بہ۔ م	3	بردس	<u>-</u> +			a	(a)	<u>y'</u> _	-90	(as	<u>y -</u>	ک ه
				th	en	J	2 (44	√ 1 =	<u>C2</u>	42	+-	_ &	Cn.	Jm	25	oi_	19 er	rev
																		150	lu
	<u>u</u> .	Ż	So	lux	ON	لع	بك	ci	Sol	ution	<u>1</u>	_11_	لبي	28	<u>a</u>	ہلےد	<u> </u>	<u> </u>	
			-																
	_						TI	ρ					4		A			1: P	P
-	5	er:	ini	fix		P	,	۱	31/	72	1	_/_ ,	301	0		ante	2_ ^ //	dif	r.
-4	<u>-</u> עע∕ ע	let u	-101	45	-0-	- -(<u> </u>	: <	9 V SX	250	10	nev	<u>.</u>	ne.		OH	<i>5∤</i> 2	نمد	L_&
	71	10	/2 		/	9 N		1)	9	LVE	<i>* C</i> ·	ag	•						•
				h	15	· y	,,	12,		, 4	₄ 7	1	1	y, 2	حا	•	_ ,	Y ,	
							-, .	6		7 0	ر.			41,	17. "			- 41	h
													1.	4(2)	427			400	_
													-	Į.	5			1	+
) (n-	1) 6	n-1)_		~cn-	+
														13,		2	<u></u>	Jn	+
																		•	
																		:	
																		•	
																		•	
																		:	_
*	14							2		728	12.00					<u> 2</u> 0		:	-22
	1		1	1					1			I	- 1	1	1	Five	App	le	_

fx) $W[2/x/x^2/x^3/e^x]=$
2 x x ² x ³ e ^x 0 1 2x 3x ² e ^x 0 0 2 6x e ^x 0 0 0 6 e ^x 0 0 0 0 e ^x ball = 2 ball ball = 2 ball b
-) 2.1.2,6,6 = 2.46
Definition: we say that y, y2,, yn are Linearly independent, it w[y,y2,yn] to
otherwise dependent
Five Apple

Ex) Show that {2/€} are independent on C-00,00)
Soln.: W[2,ex]= 2 ex 0 ex
$2e^{x}-0 \Rightarrow 2e^{x} \neq 0$ $\forall x \in (-\infty, \infty)$
?, [2, e] are linearly independent
Ex) is (x, x2) are Independent on (-8,0)?
$\frac{\text{Soln.} W\left[x_1x^2\right] \geq \left[x + x^2\right]}{\left[x + x^2\right]} \geq \left[x + x^2\right]$
Not Independent since w[x(x2) co)=02
and $o \in (-8/00)$
: So it's dependent
Five Apple

		1 1 1 1	*
Ex) is	10,2x, 4x Sina	[Indefender	14 04 (0, T
	Soln. No Bhis	set is def	enden
	Since Of	{0,2x,4xSin	(x }
Ix) Pin	d the Value	of K Such	that
{ Zx,	2K-6/Ex 7 is	defendent	
Soln.	2K-6=0 [K=3]		
	(K=3)		:
			:
			•

Fundamental Set of Solution
{y1, y2, -, yn } is sand to be
Fundamental Set of Solution for DE
and) y' + and (x) y' + + a, (x) y' + a, (x)
9-9:
Dy, 192, - 1 In are solution & for DE
2) W [y, J21 - yn] to (Independent
Abel's Theorem
If y, y are solution for
y" + P(x) y' + q(x) y=0 / When
W[J1/J2] = CC
VV L 31/32] 2 ((
Five Apple

of July are solution for xy"+2y'+xy=0 frnd w[y,1, y2](x). تَا فِي الْحِيرِ لِيْهِ الْمِيْهِ = C e = C x = Ex) It x3g" - 2g' + (3+x)y=0 if W[y, y2](2) = 3 (find W[y, y2](5). $\frac{Soln.}{5000} \frac{y'' - \frac{3}{2}y' + (\frac{3+x}{x^2})y}{5000}$ w[y1, y2](x) = ce = ce Since w[9,72](2)=3=) ce==3 (e = 3 =) (= 3e) : w[y, y2] (x) = 3eex. (=3e) =) W[y, yz] (5) = 3e³ = 3e³ = 3e³ = We arrener

= cos (Lnx) is a solution for DE x2y" + xy' + y=0, find the general y" + 1 y + 1 y 20 z) Yz = Cos(Lnx) - Se dx general Soln. is: C, CoscLux) + C2 Sin(Lux) Five Apple

honear homogeneous second ovoler with ay" + by + cy = 0 / a, b, c are constants To solve this DE we suppose that the solution has the form y = ex , then y'= verx and y"=12 Plot this in DE=) [ay"+by'+cy=0]. $\frac{\alpha r^2 e^{ix} + b v e^{ix} + c e^{ix}}{(\alpha v^2 + b v + c) e^{ix}} = 0$ 2. av2+bv+(20) is called the auxiliary eq. For DE. Then there will be 3 forms of the general soln: , Case O, It D=5-4ac>0, the we have 2 distanct real roots, say vi, va. => the solutions of DE are y= exx, y2= exx and the general Solution is y= c, y, + c2 32 Five Apple

Ex) O solve y"+5y"+6y=0 V2+5v+6=0-) auxiliangeq. @ Solve 4- 4420 12-4 20 - aux. cq. the general solution y=c1e2x + c2 =2x Five Apple

If 1262-496 =0, then we have refeated J1= =6x / y2= x =6x general Soln is: y== C. E Five Apple

Scanned with CamScanner

= complex =) y= e (,. Cos (v3x) + Sin(v3x).g)

Five Apple

y" -loy1 +25y =0 =) General Solm is 1= c1 e5x + c2 xe3x $\sqrt{z} = -b \pm \sqrt{\Delta} = \frac{2 \pm \sqrt{-16}}{2}$ $y_1 = e^{x} \cos(2x)$ $y_2 = e^{x} \sin(2x)$ Creneral Solv=)]= C, e cos(2x) + Cz & sm(2x) y = ex (c, cos(2x) + c2 sin(2x)) Five Apple

Ex) If y= e3x Sin(2x) IS a Solution for DE ay"+(2b-3)y'-(y=0, frud a,b,C. 1 gu, J (2) ighis (V+3)2 = (±2i)2 r2+6x+13=0 y"+6y1 + 13y =0

Linear Homogeneous higher order DE with Constant Coefficients:
any (n) + an y (m) + an + any + any = 0
where any, -, an are constants
Fall Solve the following DE:
$0 y''' - 2y'' - 3y' = 0$ $y'' - 3y'^{2}$
$\frac{50 \text{lm.}}{50 \text{lm.}} \sqrt{3 - 2 \sqrt{2} - 3 v} = 0$
$r(v^2-2v-3)=0$
V (V-3) (V+1) =0
$V_1 = 0$, $V_2 = 3$, $V_3 = -1$
$y_1 = e^{ix} = 1$ $y_2 = e^{ix} = e^{ix}$ $y_3 = e^{ix}$
$(y = c_1 + e^{3x}c_2 + \bar{e}^x c_3)$
Five Apple

Five Apple

=) 4 dy + 4 dt + y = 0 Five Apple

Scanned with CamScanner

The DE is couchy- Euler Five Apple

FX) If y=x2 cos(2 Lnx) is asolution for DE DE is cauchy-Euler =) |x=et => Lnx=t Five Apple

[W[x, ya)] = x2 ex, find the function yax) y'(x) - 2 y(x) = Mex) = especial = -State = 42 tran John g(x) dx + Euro 9= x 5 1. x ex dx + cx y= xex +xc $= X e^{X} + X e^{2} - X e$ Five Apple

Renark: The DE ay"+by'+cy=0 can L[y](x) = ay" + by' + cy is almost operator L[3](x) = 3y" - 47' + 5y. Frod L[9](x) where 1 [x3-4x2+1] = 18x - 24 - 12x2+32x+5x3-20x2+5 $=5x^3-32x^2+50x-19$ Five Apple

Ex) If cheval	LE] = 60 - 7](x) 2	0			Lhe	en C	mol	the
	LE	7](x) 2	0			Lha	en C	mol	the
	LE	7](x) 2	0			Lhe	en C	mol	the
	LE	7](x) 2	0						
	LE	7](x) 2	0						
Soln-		_								
Soln.		_								
		_								
	*		1" -	- 1						
			u	24 -	34:	-0				
			<u> </u>	-2V	+3:	20				51
				- v			- 2			
										1
				200						-
				V2 -	V2 - 2V	V2-2V+3-	V ² - 2V + 3 = 0	V ² - 2V + 3 = 0	V ² -2V+3=0	

CH.4: Non-Homogeneous Linear Second a	nd
higher orde	<u>~</u>
ay" + by + cy = g(a)	
TOSOIVE this DE:	
O Solve the homog. eq. ay"+by' + cy =0 to find the homog. Soln. called y = C," Conflementary Soln.	
2) Solve the non-homog- to find the Part Soln: Yp	icwa
3) The general solution is: y=yn+yp	
to find the Particular soln. yp I we use the following methods:	
Dundetermined Coefficients	
2 Variation of Parameter	
Five Apple	l

Method 0: undetermined coefficients:
ay'' + by' + cy = g(x)
To use this method, gow dust be:
- Polynomial, exponential, ov (sin, cos)
Polynomial
من فرول کے لون کی من کار
g(x) ye ye ouig
(A) xx
$\begin{array}{cccccccccccccccccccccccccccccccccccc$
ا: عدد ميات ظهور الصفر في حدور الهادلة و K
Exponential:
3 ex - 3 (A ex) xm
$\times e^{\times x} \longrightarrow ((Ax+b)e^{\times x}) \times^{m}$
$\chi^2 e^{xx} \longrightarrow ((Ax^2 + bx + c) e^{xx}) x^{x}$
Five Apple

4"+4y - cos2x -4 ASTM2X-4 AX COS2X+4BCOS2X-4BJSTM2X+ -4A Sin 2x+4BCOS 2x = COS2x :: Particular soln is: = C, CoS2x + C2Sin2x+ = x Sin(x)

(3) $y'' - 6y' + 9y = 6x^2 + 2 - 12e^{3x}$	
Soln:	
@ homog. y"-6y'+ qy=0	
$\sqrt{2}-6\sqrt{4}=0$	
$y_1 = e^{3x}$ $(v-3) = 0$ $y_2 = x e^{3x}$ $v=3$	
Jh = e3x c1 + Xe3x C2	
@ Non-homog. =) g(x) = 6x2+2-12e	3x
$\Im \rho = \left(A x^2 + B x + c \right) x^{k} + \left(D e^{3x} \right) x^{m}$	
$[k=0] \qquad [m=2]$	
$\therefore \mathcal{J}_{P} = Ax^{2} + Bx + C + 0x^{2} e^{3x}$	
Five App	le

 $(1)^{2} + (1)^{2} = x + 2 e^{x} - (0)(3x)$ (3) non-homeg. =) g(a) = x+2ex - cos(3x) $y_p = (Ax + B)x^k + (ce^x)x^m + (DSin(3x) + 2(eS(3x))x^k$ (M=0)

(M=0) Jp = Ax2+Bx + Cx2 ex + Osin(3x) + + cos(3x)

Five Apple

+ (B COS2x + CSin2x) Xn Five Apple

Solve @ Futercele =
$$(Lnx)^3 - Lnx$$
, x >0

Solve @ Futercele = $(Lnx)^3 - Lnx$, x >0

Solve @ Futercele = $(Lnx)^3 - Lnx$, x >0

Solve @ Futercele = $(Lnx)^3 + L(Lnx)^3 + L(Lnx)^4 + L(Lnx)^4 = (Lnx)^4 = (Lnx)^4 + L(Lnx)^4 = (Lnx)^4 = (Lnx)^4$

Scanned with CamScanner

Soln. Euler eq.
$$x=e^t \leftrightarrow Lnx=t$$

$$3e^{-1}$$

$$3e^{-1}$$

$$3e^{-1}$$

$$3e^{-1}$$

$$3e^{-1}$$

$$3e^{-1}$$

$$3e^{-1}$$

$$3e^{-1}$$

$$4e^{-1}$$

$$4e^{1}$$

$$4e^{-1}$$

$$4e$$

Five Apple

x2 y" + xy' + y = Lnx + Sin (Lnx) 1 x 20 JP(+) = At +B + (+ Cos(t) + Ot Sm(+) Five Apple

Ex) find the Capthy - Fully eq. of second order
general soln.!
y(x) = C, x + C2x Lnx + x (Lnx)2
do the doctor of the doctor of the doctor
Solor: Euleveg. =) X=et +> Lyxzt
20 01 00 at 60 at 10 10 10 10 10 10 10 10 10 10 10 10 10
=) 9. (oln. : Y(t) = c, et + czet + et +?
3p 580
Secondorleil Pril
Secondogiail (iii) =)9.5° 7= Jh+4p
@ homog. =) yh = <1et + cztet
$\Rightarrow) V_1=1 V_2=1$
$(V-V_1)(V-V_2)=0$
(V-V) (V-1) =0
$V^2 - 2V + 1 = 0$
- dy 2014 - 0 = 0 coly 11 wh
The de to the distriction of the
7 5-1 h-7-2
-) PI-1 D-M-2
<u> </u>
Non-homog, ! Yally - Fet is a Particular Soil
Non-hang, ! yp(+) = tet is a Particular Solm
rov dy - 2 dy +y = g(t)
The Apple

Scanned with CamScanner

Scanned with CamScanner

If y is a solution for DE: L [y] (x) = ay" +by' + cy = Pr(x) and J2 is a solution for DE: LEGJ (x) = ag" + bg + cy = fr (x), then y= (1 /1+4), a soln for DE LEG (M) = ay" + by + cy = 4 h(x) + 4h Fx) If y, = = 2x - 9 is a soln. For OE: 4"+341+27=3x and $y_2 = e^{3x}$ is a solution for DE: $y'' + 3y' + 2y = (6e^{3x})$ find the solm. For DE: 4"+ 34 + 24 = (-9x + 20 = 3x) Fun 50/m fca) = C, h, (a) + Cz fz(a) -9x+20e3x = Ci3x + C2 (0e3x Jole 9, 100 $\frac{2-3(\frac{3}{2}x-9)+2(e^{3x})}{2(\frac{3}{4}x+e^{3x})}$

Ex) If -x, x2-x are solutions for the DE: 03 y" + fca) y"-y=g(x). find fcx) and gas Soln. -x is asolution =) 4 =-1 Put 4,1/1, 4", 7," in DE: 0+0+x=g(a)=) g(x)=x 42 = x -x is asoln. =) 42= Ret 42, 41, 4" 4" IN DE =) $0 + (w) \cdot 1 - (x^2 - x) = x$ $=) \left| f(\alpha) \right| = \frac{x^2}{7}$ Five Apple

Scanned with CamScanner

CH.5 : LaPlace Transforms as: L [f(t)] = \$ f(t). est dt = 1 (Pct)] = L [3] = \$ 3 et dt = him & 3 est dt = Lim 3 = 5t h Five Apple

1 1 1 1	1 1	1 1 1	1 1 1	1 1
Remark:				
7-100				
	F(x)	-L(fun3=F15)		
	9	9 5		
	in			-
	£^	·N/	N=1/2	3,
	at	<u> </u>		
	Sin(at)	52+a2		
		5+0		
	CoStat)	$\frac{5}{5^2+a^2}$		
	Sinh(at)			<u> </u>
	,,,,,oe,	52-02		<u> </u>
Remark:	C054(at)	5 52 92		<u>:</u>
<u> </u>		5292		
Ex: Evaluat			[(66)] + B 1	
D L [5] =	5			عو به تولیت
	>			<u> </u>
@ L (cos()	141 = 5 5+9	,		
3 h [25]	n <i>ESt</i>) -4e ^{2t}	+lot -2 =	22 [Sin(56)]-	-4/1626]+
= 2.	5 - 4. <u>1</u>	-2 + lo. 5!		<u> </u>
= 10 5 ² +25	- 4 + 12 5-2	100 <u>2</u> 100 <u>5</u>		
1 1 1 1	1 1 1	1 1 1 1	ı ı ı ı Fiv	re Apple

Ex) Evaluate B L Sin (3t- 15) } = L [Sin(3t) COST - SINT COS(St)] 1 (\frac{1}{2} \sin (3 t) - 1 cosc3t)]= \frac{15}{2} \langle \langle \sin (3t)] - \frac{1}{2} \langle \sin (3t)] $=\frac{\sqrt{3}}{2} \cdot \frac{3}{5^{2}+9} - \frac{5}{2} \cdot \frac{5}{53}$ (2) f (Sin (36)) = h (\frac{1}{2} - \frac{1}{2} cos/66) = L[=]-= L](05/64)] $=\frac{1}{25}-\frac{5}{7}\cdot\frac{5}{6^2+36}$ 3 f (cos (24) · cos (5t)] = h [= [Cos(-3t) + cos(7t)]] = = [[COS(36)] + L [COS(76)] = 1 [529 + 5249] H.w. G LISINC3t) . SIN (St3] the state of the s

Scanned with CamScanner

Five Apple

Ex) Evaluate

(a)
$$\frac{1}{5^{2}} = 5$$

(b) $\frac{1}{5^{2}} = 5$

(c) $\frac{1}{5^{2}} = 5$

(d) $\frac{1}{5^{2}} = 5$

(e) $\frac{1}{5^{2}} = \frac{25}{5^{2}} + \frac{4}{5^{2}} = \frac{1}{5^{2}} = \frac$

0 L [u(b-2)] = e tra 5/4 (6-3) [100] = h { (4 (t-3)) = = 35 3) h { 4(t-5) (t2+t+2) }= = e h ((+5)2+(++5)+2} = = 55 h 1 t2+lot +25 + ++5+2] $=e^{-35}$ $\int_{-3}^{3} t^2 + 11t + 32$ $=e^{-55}\left(\frac{2!}{3}+\frac{11}{2}+\frac{32}{5}\right)$ In (4- 1) COS(2+) = = = L (Cos(2(++\frac{1}{2})) = = = L (cos(2++2\frac{1}{2}) = = = = Cos(2t) Cos(2\frac{1}{2}) - Sin(2t) Sin(2\frac{1}{2})} = = = (= 1 (COS(2t) } - J3 f (Sin(2t) } = e3 (-2 · 52+4 3 · (2+4)

Soln. [3-(++2)] Five Apple

 $\frac{(5-1)e^{2s}}{(5-1)^2+16} = 4(1-2) h^{-1}$ et, cos4t 7 et-2. (05(4(t-2)) { <u>|</u> (5-7)¹⁰ } Five Apple

solving the IVP by laplace transforma	
10(n) whe I VP b) lay lace wans for man	5 K
Remark:	
Oh [y(n)] = 5 h [y] - 5 y(0) - 5 y	1-60
@ If n=2:	_
L [7"(t)] = 52 h [y] - 5 y(0) - y(0)	_
OTFN=1;	_
h [y'(6) [= 5 h [y] - y(0)	_
To solve and IUP by laplate transformations	:
1- 1 Take the laplace transform for both sides of	_
2- Lind L 37(t) = 7(5)	_
3- Take how both Sides in Part (2)	_
	_

Sa) Solve the IUP by laplace Transform: y"-6y + (3y = 0, y(0)=0, y(0)=-3 52 h [y] +3-65 h [y] + 13 h [y] =0 -3 52-65+13 =-3/ (15-3)2+47 = -3 et. Sin(2t) = -3 e3t sin(2t) Five Apple

use laplace transform- to solve Five Apple

Fx) solve the IUP by Callage trans Gover. y'-2y = 9(t) , y(0)=0, g(+)= Soln sh[y]-y(0)-2h[y]=2e 741= L171=2 es Y/4 = 11. Y/5 = 2 h (e) = 24(t-1) [= 1 [5-2] - = [5]] + > t-1 12 A(s)+B(s-2) = 24(t-1) = 2e - 1]

$$= 2 \text{ u } (t-1) \left[\frac{1}{2} e^{(t-1)} - \frac{1}{2} \right]$$

$$= \text{ u } (t-1) \left(e^{2t-2} - 1 \right)$$

$$= \text{ u } (t-1) \left(e^{2t-2} - 1 \right)$$

$$= \text{ u } (t-1) \left(e^{2t-2} - 1 \right)$$

$$= \text{ u } (t-1) \left(e^{2t-2} - 1 \right)$$

$$= \text{ u } (t-1) \left(e^{2t-2} - 1 \right)$$

$$= \text{ u } (t-1) \left(e^{2t-2} - 1 \right)$$

$$= \text{ u } (t-1) \left(e^{2t-2} - 1 \right)$$

$$= \text{ u } (t-1) \left(e^{2t-2} - 1 \right)$$

$$= \text{ u } (t-1) \left(e^{2t-2} - 1 \right)$$

$$= \text{ u } (t-1) \left(e^{2t-2} - 1 \right)$$

$$= \text{ u } (t-1) \left(e^{2t-2} - 1 \right)$$

$$= \text{ u } (t-1) \left(e^{2t-2} - 1 \right)$$

$$= \text{ u } (t-1) \left(e^{2t-2} - 1 \right)$$

$$= \text{ u } (t-1) \left(e^{2t-2} - 1 \right)$$

$$= \text{ u } (t-1) \left(e^{2t-2} - 1 \right)$$

$$= \text{ u } (t-1) \left(e^{2t-2} - 1 \right)$$

$$= \text{ u } (t-1) \left(e^{2t-2} - 1 \right)$$

$$= \text{ u } (t-1) \left(e^{2t-2} - 1 \right)$$

$$= \text{ u } (t-1) \left(e^{2t-2} - 1 \right)$$

$$= \text{ u } (t-1) \left(e^{2t-2} - 1 \right)$$

$$= \text{ u } (t-1) \left(e^{2t-2} - 1 \right)$$

$$= \text{ u } (t-1) \left(e^{2t-2} - 1 \right)$$

$$= \text{ u } (t-1) \left(e^{2t-2} - 1 \right)$$

$$= \text{ u } (t-1) \left(e^{2t-2} - 1 \right)$$

$$= \text{ u } (t-1) \left(e^{2t-2} - 1 \right)$$

$$= \text{ u } (t-1) \left(e^{2t-2} - 1 \right)$$

$$= \text{ u } (t-1) \left(e^{2t-2} - 1 \right)$$

$$= \text{ u } (t-1) \left(e^{2t-2} - 1 \right)$$

$$= \text{ u } (t-1) \left(e^{2t-2} - 1 \right)$$

$$= \text{ u } (t-1) \left(e^{2t-2} - 1 \right)$$

$$= \text{ u } (t-1) \left(e^{2t-2} - 1 \right)$$

$$= \text{ u } (t-1) \left(e^{2t-2} - 1 \right)$$

$$= \text{ u } (t-1) \left(e^{2t-2} - 1 \right)$$

$$= \text{ u } (t-1) \left(e^{2t-2} - 1 \right)$$

$$= \text{ u } (t-1) \left(e^{2t-2} - 1 \right)$$

$$= \text{ u } (t-1) \left(e^{2t-2} - 1 \right)$$

$$= \text{ u } (t-1) \left(e^{2t-2} - 1 \right)$$

$$= \text{ u } (t-1) \left(e^{2t-2} - 1 \right)$$

$$= \text{ u } (t-1) \left(e^{2t-2} - 1 \right)$$

$$= \text{ u } (t-1) \left(e^{2t-2} - 1 \right)$$

$$= \text{ u } (t-1) \left(e^{2t-2} - 1 \right)$$

$$= \text{ u } (t-1) \left(e^{2t-2} - 1 \right)$$

$$= \text{ u } (t-1) \left(e^{2t-2} - 1 \right)$$

$$= \text{ u } (t-1) \left(e^{2t-2} - 1 \right)$$

$$= \text{ u } (t-1) \left(e^{2t-2} - 1 \right)$$

$$= \text{ u } (t-1) \left(e^{2t-2} - 1 \right)$$

$$= \text{ u } (t-1) \left(e^{2t-2} - 1 \right)$$

$$= \text{ u } (t-1) \left(e^{2t-2} - 1 \right)$$

$$= \text{ u } (t-1) \left(e^{2t-2} - 1 \right)$$

$$= \text{ u } (t-1) \left(e^{2t-2} - 1 \right)$$

$$= \text{ u } (t-1) \left(e^{2t-2} - 1 \right)$$

$$= \text{ u } (t-1) \left(e^{2t-2} - 1 \right)$$

$$= \text{ u } (t-1) \left(e^{2t-2} - 1 \right)$$

$$= \text{ u } (t-1) \left(e^{2t-2} - 1 \right)$$

$$= \text{ u } (t-1) \left(e^{2t-2} - 1 \right)$$

$$= \text{ u } (t$$

